Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.471
Filtrar
1.
Am J Reprod Immunol ; 91(4): e13844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627916

RESUMO

Preeclampsia is one of the most common disorders that poses threat to both mothers and neonates and a major contributor to perinatal morbidity and mortality worldwide. Viral infection during pregnancy is not typically considered to cause preeclampsia; however, syndromic nature of preeclampsia etiology and the immunomodulatory effects of viral infections suggest that microbes could trigger a subset of preeclampsia. Notably, SARS-CoV-2 infection is associated with an increased risk of preeclampsia. Herein, we review the potential role of viral infections in this great obstetrical syndrome. According to in vitro and in vivo experimental studies, viral infections can cause preeclampsia by introducing poor placentation, syncytiotrophoblast stress, and/or maternal systemic inflammation, which are all known to play a critical role in the development of preeclampsia. Moreover, clinical and experimental investigations have suggested a link between several viruses and the onset of preeclampsia via multiple pathways. However, the results of experimental and clinical research are not always consistent. Therefore, future studies should investigate the causal link between viral infections and preeclampsia to elucidate the mechanism behind this relationship and the etiology of preeclampsia itself.


Assuntos
Pré-Eclâmpsia , Viroses , Vírus , Gravidez , Recém-Nascido , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Placentação , Trofoblastos/metabolismo , Viroses/complicações , Viroses/metabolismo , Placenta/metabolismo
2.
Am J Reprod Immunol ; 91(4): e13843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606700

RESUMO

PROBLEM: Preeclampsia (PE), new-onset hypertension during pregnancy accompanied by organ dysfunction, is associated with chronic inflammation including elevated IL-17, CD4+ T cells, B cells and natural killer (NK) cells. IL-17 can serve as a signal for either the adaptive or innate immune activation. We have previously shown that IL-17 contributes to increased blood pressure in association with elevated TH17 cells, NK cells and B cells secreting angiotensin II type 1 receptor agonistic autoantibodies (AT1-AA) during pregnancy. Moreover, we have shown an important role for CD4+T cells and AT1-AA in multiorgan dysfunction as measured by mitochondrial oxidative stress (mt ROS). However, we do not know the role of adaptive immune cells such as T cells or B cells secreting AT1-AA in mediating the PE phenotype in response to elevated IL-17. METHOD OF STUDY: In order to answer this question, we infused IL-17 (150 pg/day i.p.) into either Sprague Dawley (SD) or athymic nude rats via mini-osmotic pump from gestational day (GD) 14-19 of pregnancy. On GD 19, blood pressure was determined and NK cells, mtROS and respiration and AT1-AA production from B cells were measured. RESULTS: Infusion of IL-17 increased blood pressure in the presence or absence of T cells. Mean arterial pressure (MAP) increased with IL-17 from 98 ± 2 mm Hg (n = 12) to 114 ± 2 (n = 12) in SD rats and from 99 ± 4 mm Hg (n = 7) versus 115 ± 2 mm Hg (n = 7) in athymic nude rats. Similar trends were seen in NK cells and placental mt ROS. Knowing that IL-17 stimulates AT1-AA in SD pregnant rats, we included a group of SD and athymic nude pregnant rats infused with IL-17 and the AT1-AA inhibitor peptide ('n7AAc'). The inhibitor attenuated blood pressure (104.9 ± 3.2, p = .0001) and normalized NK cells and mt function in SD pregnant rats. Importantly, the AT1-AA was not produced in pregnant nude IL-17 treated rats, nor did 'n7AAc' effect MAP, in nude athymic rats. CONCLUSION: These findings suggest two conclusions; one is that IL-17 causes hypertension and multiorgan dysfunction in the absence of T cells and AT1-AA, possibly through its activation of innate cells and secondly, in the presence of T cells, blockade of the AT1-AA attenuates the effect of IL-17. This study indicates the critical effects of elevated IL-17 during pregnancy and suggest treatment modalities to consider for PE women.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Ratos , Gravidez , Animais , Angiotensina II/metabolismo , Placenta/metabolismo , Ratos Sprague-Dawley , Autoanticorpos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Interleucina-17/metabolismo , Ratos Nus
3.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607058

RESUMO

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Assuntos
Cálcio , Artéria Uterina , Ratos , Gravidez , Feminino , Animais , Artéria Uterina/metabolismo , Cálcio/metabolismo , Azeite de Oliva/farmacologia , Óxido Nítrico/metabolismo , Placenta/metabolismo , Rianodina , Fenóis/farmacologia , Dilatação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Endotélio/metabolismo
4.
Front Immunol ; 15: 1385950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566996

RESUMO

The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Recém-Nascido , Humanos , Gravidez , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Biomarcadores/metabolismo
5.
Front Immunol ; 15: 1386528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590527

RESUMO

Introduction: Inflammation of the placenta is harmful to both the fetus and the mother. Inflammation is strongly associated with diabetes, a common complication of pregnancy. Hofbauer cells (HBCs), unique immune system cells of fetal origin in the placenta, play complex roles, including growth of placental villi and their branching, stromal remodelling, and angiogenesis. Methods: Our study investigated the expression of IL-1ß, IL-10, CYP2C8, CYP2C9, CYP2J2 and sEH in HBCs from patients with type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM) compared to healthy controls using immunohistochemistry. We also assessed the structure of the villus stroma using Masson´s trichrome. Results: In T1DM, HBCs showed inflammatory activation characterised by increased IL-1ß and decreased CYP epoxygenase expression compared to normal placentas. Conversely, significant inflammation in HBCs appeared less likely in GDM, as levels of IL-1ß and CYP epoxygenases remained stable compared to normal placentas. However, GDM showed a significant increase in sEH expression. Both types of diabetes showed delayed placental villous maturation and hypovascularisation, with GDM showing a more pronounced effect. Conclusion: The expression profiles of IL-1ß, CYP epoxygenases and sEH significantlly differ between controls and diabetic placentas and between T1DM and GDM. These facts suggest an association of the CYP epoxygenase-EETs-sEH axis with IL-1ß expression as well as villous stromal hypovascularisation. Given the stable high expression of IL-10 in both controls and both types of diabetes, it appears that immune tolerance is maintained in HBCs.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Gestacional , Gravidez , Humanos , Feminino , Placenta/metabolismo , Interleucina-10/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Inflamação/metabolismo
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 437-446, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597434

RESUMO

OBJECTIVE: To investigate the protective effect of metformin against PM2.5-induced functional impairment of placental trophoblasts and explore the underlying mechanism. METHODS: Sixteen pregnant Kunming mice were randomly assigned into two groups (n=8) for intratracheal instillation of PBS or PM2.5 suspension at 1.5, 7.5, and 12.5 days of gestation. The pregnancy outcome of the mice was observed, and placental zonal structure and vascular density of the labyrinth area were examined with HE staining, followed by detection of ferroptosis-related indexes in the placenta. In cultured human trophoblasts (HTR8/SVneo cells), the effects of PM2.5 exposure and treatment with metformin on cell viability, proliferation, migration, invasion, and tube formation ability were evaluated using CCK8 assay, EDU staining, wound healing assay, Transwell experiment, and tube formation experiment; the cellular expressions of ferroptosis-related proteins were analyzed using ELISA and Western blotting. RESULTS: M2.5 exposure of the mice during pregnancy resulted in significantly decreased weight and number of the fetuses and increased fetal mortality with a reduced placental weight (all P<0.001). PM2.5 exposure also caused obvious impairment of the placental structure and trophoblast ferroptosis. In cultured HTR8/SVneo cells, PM2.5 significantly inhibited proliferation, migration, invasion, and angiogenesis of the cells by causing ferroptosis. Metformin treatment obviously attenuated PM2.5-induced inhibition of proliferation, migration, invasion, and angiogenesis of the cells, and effectively reversed PM2.5-induced ferroptosis in the trophoblasts as shown by significantly increased intracellular GSH level and SOD activity, reduced MDA and Fe2+ levels, and upregulated GPX4 and SLC7A11 protein expression (P<0.05 or 0.01). CONCLUSION: PM2.5 exposure during pregnancy causes adverse pregnancy outcomes and ferroptosis and functional impairment of placental trophoblasts in mice, and metformin can effectively alleviate PM2.5-induced trophoblast impairment.


Assuntos
Ferroptose , Metformina , Pré-Eclâmpsia , Camundongos , Gravidez , Feminino , Humanos , Animais , Placenta/metabolismo , Metformina/farmacologia , Trofoblastos , Movimento Celular , Material Particulado/efeitos adversos , Pré-Eclâmpsia/metabolismo
7.
Commun Biol ; 7(1): 429, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594496

RESUMO

The study aims to explore the effect of PPARγ signaling on ferroptosis and preeclampsia (PE) development. Serum and placental tissue are collected from healthy subjects and PE patients. The PPARγ and Nrf2 decreases in the PE. Rosiglitazone intervention reverses hypoxia-induced trophoblast ferroptosis and decreases lipid synthesis by regulating Nfr2 and SREBP1. Compared to the Hypoxia group, the migratory and invasive abilities enhance after rosiglitazone and ferr1 treatment. Rosiglitazone reduces the effect of hypoxia and erastin. The si-Nrf2 treatment attenuats the effects of rosiglitazone on proliferation, migration, and invasion. The si-Nrf2 does not affect SREBP1 expression. PPARγ agonists alleviates ferroptosis in the placenta of the PE rats. The study confirms that PPARγ signaling and ferroptosis-related indicators were dysregulated in PE. PPARγ/Nrf2 signaling affects ferroptosis by regulating lipid oxidation rather than SREBP1-mediated lipid synthesis. In conclusion, our study find that PPARγ can alleviate PE development by regulating lipid oxidation and ferroptosis.


Assuntos
Ferroptose , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Ratos , Animais , Rosiglitazona/farmacologia , Rosiglitazona/metabolismo , PPAR gama/metabolismo , Metabolismo dos Lipídeos , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/prevenção & controle , Pré-Eclâmpsia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hipóxia/metabolismo , Lipídeos
8.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594674

RESUMO

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Assuntos
Diabetes Mellitus , Pré-Eclâmpsia , Recém-Nascido , Humanos , Gravidez , Feminino , Placenta/metabolismo , Número de Gestações , Ocitocina/metabolismo , Pré-Eclâmpsia/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteômica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Ocitocina/metabolismo
9.
Elife ; 122024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639990

RESUMO

CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Placenta , Gravidez , Animais , Feminino , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Placenta/metabolismo , Transdução de Sinais/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Fosforilação , Antígenos CD4 , Mamíferos/metabolismo
10.
Cell Commun Signal ; 22(1): 230, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627796

RESUMO

OBJECTIVE: Recurrent pregnancy loss (RPL) patients have higher absolute numbers of decidual natural killer (dNK) cells with elevated intracellular IFN-γ levels leading to a pro-inflammatory cytokine milieu, which contributes to RPL pathogenesis. The main objective of this study was twofold: first to explore the regulatory effects and mechanisms of villus-derived exosomes (vEXOs) from induced abortion patients or RPL patients at the level of intracellular IFN-γ in dNK cells; second to determine the validity of application of vEXOs in the treatment of unexplained RPL (uRPL) through in vitro experiments and mouse models. METHODS: Exosomes were isolated from villus explants by ultracentrifugation, co-cultured with dNK cells, and purified by enzymatic digestion and magnetically activated cell sorting. Flow cytometry, enzyme-linked immunosorbent assays, and RT-qPCR were used to determine IFN-γ levels. Comparative miRNA analysis of vEXOs from induced abortion (IA) and uRPL patients was used to screen potential candidates involved in dNK regulation, which was further confirmed by luciferase reporter assays. IA-vEXOs were electroporated with therapeutic miRNAs and encapsulated in a China Food and Drug Administration (CFDA)-approved hyaluronate gel (HA-Gel), which has been used as a clinical biomaterial in cell therapy for > 30 years. In vivo tracking was performed using 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyaine iodide (DiR) labelling. Tail-vein and uterine horn injections were used to evaluate therapeutic effects of the engineered exosomes in an abortion-prone mouse model (CBA/J × DBA/2 J). Placental growth was evaluated based on placental weight. IFN-γ mRNA levels in mouse placentas were measured by RT-qPCR. RESULTS: IFN-γ levels were significantly higher in dNK cells of uRPL patients than in IA patients. Both uRPL-vEXOs and IA-vEXOs could be efficiently internalized by dNK cells, whereas uRPL-vEXOs could not reduce the expression of IFN-γ by dNK cells as much as IA-vEXOs. Mechanistically, miR-29a-3p was delivered by vEXOs to inhibit IFN-γ production by binding to the 3' UTR of IFN-γ mRNA in dNK cells. For in vivo treatment, application of the HA-Gel effectively prolonged the residence time of vEXOs in the uterine cavity via sustained release. Engineered vEXOs loaded with miR-29a-3p reduced the embryo resorption rate in RPL mice with no signs of systemic toxicity. CONCLUSION: Our study provides the first evidence that villi can regulate dNK cell production of IFN-γ via exosome-mediated transfer of miR-29a-3p, which deepens our understanding of maternal-fetal immune tolerance for pregnancy maintenance. Based on this, we developed a new strategy to mix engineered vEXOs with HA-Gel, which exhibited good therapeutic effects in mice with uRPL and could be used for potential clinical applications in uRPL treatment.


Assuntos
Aborto Induzido , Aborto Espontâneo , MicroRNAs , Humanos , Gravidez , Feminino , Animais , Camundongos , Interferon gama/metabolismo , Placenta/metabolismo , Decídua/metabolismo , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Matadoras Naturais , RNA Mensageiro/metabolismo
11.
Cell Mol Life Sci ; 81(1): 177, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600394

RESUMO

Biological sex is a key variable influencing many physiological systems. Disease prevalence as well as treatment success can be modified by sex. Differences emerge already early in life and include pregnancy complications and adverse birth outcomes. The placenta is a critical organ for fetal development and shows sex-based differences in the expression of hormones and cytokines. Epigenetic regulation, such as DNA methylation (DNAm), may underlie the previously reported placental sexual dimorphism. We associated placental DNAm with fetal sex in three cohorts. Individual cohort results were meta-analyzed with random-effects modelling. CpG-sites differentially methylated with sex were further investigated regarding pathway enrichment, overlap with methylation quantitative trait loci (meQTLs), and hits from phenome-wide association studies (PheWAS). We evaluated the consistency of findings across tissues (CVS, i.e. chorionic villus sampling from early placenta, and cord blood) as well as with gene expression. We identified 10,320 epigenome-wide significant sex-differentially methylated probes (DMPs) spread throughout the epigenome of the placenta at birth. Most DMPs presented with lower DNAm levels in females. DMPs mapped to genes upregulated in brain, were enriched for neurodevelopmental pathways and significantly overlapped with meQTLs and PheWAS hits. Effect sizes were moderately correlated between CVS and placenta at birth, but only weakly correlated between birth placenta and cord blood. Sex differential gene expression in birth placenta was less pronounced and implicated genetic regions only marginally overlapped with those associated with differential DNAm. Our study provides an integrative perspective on sex-differential DNAm in perinatal tissues underscoring the possible link between placenta and brain.


Assuntos
Metilação de DNA , Placenta , Recém-Nascido , Humanos , Gravidez , Feminino , Masculino , Metilação de DNA/genética , Placenta/metabolismo , Epigênese Genética , Caracteres Sexuais , Desenvolvimento Fetal
12.
FASEB J ; 38(7): e23598, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581244

RESUMO

The precise molecular mechanism behind fetal growth restriction (FGR) is still unclear, although there is a strong connection between placental dysfunction, inadequate trophoblast invasion, and its etiology and pathogenesis. As a new type of non-coding RNA, circRNA has been shown to play a crucial role in the development of FGR. This investigation identified the downregulation of hsa_circ_0034533 (circTHBS1) in FGR placentas through high-sequencing analysis and confirmed this finding in 25 clinical placenta samples using qRT-PCR. Subsequent in vitro functional assays demonstrated that silencing circTHBS1 inhibited trophoblast proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression and promoted apoptosis. Furthermore, when circTHBS1 was overexpressed, cell function experiments showed the opposite result. Analysis using fluorescence in situ hybridization revealed that circTHBS1 was primarily found in the cytoplasmic region. Through bioinformatics analysis, we anticipated the involvement of miR-136-3p and IGF2R in downstream processes, which was subsequently validated through qRT-PCR and dual-luciferase assays. Moreover, the inhibition of miR-136-3p or the overexpression of IGF2R partially reinstated proliferation, migration, and invasion abilities following the silencing of circTHBS1. In summary, the circTHBS1/miR-136-3p/IGF2R axis plays a crucial role in the progression and development of FGR, offering potential avenues for the exploration of biological indicators and treatment targets.


Assuntos
MicroRNAs , Feminino , Humanos , Gravidez , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Retardo do Crescimento Fetal/metabolismo , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
13.
Am J Reprod Immunol ; 91(3): e13836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528656

RESUMO

PROBLEM: Fetal spina bifida (SB) is more common in pregnant people with folate deficiency or anomalies of folate metabolism. It is also known that fetuses with SB have a higher risk of low birthweight, a condition that is typically placental-mediated. We therefore hypothesized that fetal SB would associate with altered expression of key placental folate transporters and an increase in Hofbauer cells (HBCs), which are folate-dependent placental macrophages. METHOD OF STUDY: Folate receptor-α (FRα), proton coupled folate receptor (PCFT), and reduced folate carrier (RFC) protein localization and expression (immunohistochemistry) and HBC phenotypes (HBC abundance and folate receptor-ß [FRß] expression; RNA in situ hybridization) were assessed in placentae from fetuses with SB (cases; n = 12) and in term (n = 10) and gestational age (GA) - and maternal body mass index - matched (n = 12) controls without congenital anomalies. RESULTS: Cases had a higher proportion of placental villous cells that were HBCs (6.9% vs. 2.4%, p = .0001) and higher average HBC FRß expression (3.2 mRNA molecules per HBC vs. 2.3, p = .03) than GA-matched controls. HBCs in cases were largely polarized to a regulatory phenotype (median 92.1% of HBCs). In sex-stratified analyses, only male cases had higher HBC levels and HBC FRß expression than GA-matched controls. There were no differences between groups in the total percent of syncytium and stromal cells that were positive for FRα, PCFT, or RFC protein immunolabeling. CONCLUSIONS: HBC abundance and FRß expression by HBCs are increased in placentae of fetuses with SB, suggesting immune-mediated dysregulation in placental phenotype, and could contribute to SB-associated comorbidities.


Assuntos
Placenta , Disrafismo Espinal , Gravidez , Masculino , Feminino , Humanos , Placenta/metabolismo , Ácido Fólico/metabolismo , Fenótipo , Disrafismo Espinal/genética , Disrafismo Espinal/metabolismo , Expressão Gênica
14.
PLoS Pathog ; 20(3): e1011879, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437239

RESUMO

Placental accumulation of Plasmodium falciparum infected erythrocytes results in maternal anemia, low birth weight, and pregnancy loss. The parasite protein VAR2CSA facilitates the accumulation of infected erythrocytes in the placenta through interaction with the host receptor chondroitin sulfate A (CSA). Antibodies that prevent the VAR2CSA-CSA interaction correlate with protection from placental malaria, and VAR2CSA is a high-priority placental malaria vaccine antigen. Here, structure-guided design leveraging the full-length structures of VAR2CSA produced a stable immunogen that retains the critical conserved functional elements of VAR2CSA. The design expressed with a six-fold greater yield than the full-length protein and elicited antibodies that prevent adhesion of infected erythrocytes to CSA. The reduced size and adaptability of the designed immunogen enable efficient production of multiple variants of VAR2CSA for use in a cocktail vaccination strategy to increase the breadth of protection. These designs form strong foundations for the development of potent broadly protective placental malaria vaccines.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Gravidez , Feminino , Placenta/metabolismo , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários , Plasmodium falciparum/metabolismo , Antígenos de Protozoários , Sulfatos de Condroitina/metabolismo , Eritrócitos/parasitologia
15.
Commun Biol ; 7(1): 363, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521877

RESUMO

The placenta is a unique organ for ensuring normal embryonic growth in the uterine. Here, we found that maternal RNA transcription in Dlk1-Dio3 imprinted domain is essential for placentation. PolyA signals were inserted into Gtl2 to establish a mouse model to prevent the expression of maternal RNAs in the domain. The maternal allele knock-in (MKI) and homozygous (HOMO) placentas showed an expanded junctional zone, reduced labyrinth and poor vasculature impacting both fetal and maternal blood spaces. The MKI and HOMO models displayed dysregulated gene expression in the Dlk1-Dio3 domain. In situ hybridization detected Dlk1, Gtl2, Rtl1, miR-127 and Rian dysregulated in the labyrinth vasculature. MKI and HOMO induced Dlk1 to lose imprinting, and DNA methylation changes of IG-DMR and Gtl2-DMR, leading to abnormal gene expression, while the above changes didn't occur in paternal allele knock-in placentas. These findings demonstrate that maternal RNAs in the Dlk1-Dio3 domain are involved in placental vasculature, regulating gene expression, imprinting status and DNA methylation.


Assuntos
Proteínas de Ligação ao Cálcio , Impressão Genômica , RNA Longo não Codificante , Animais , Feminino , Camundongos , Gravidez , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Placenta/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
16.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488028

RESUMO

Placenta accreta spectrum (PAS) is one of the most dangerous complications in obstetrics, which can lead to severe postpartum bleeding and shock, and even necessitate uterine removal. The abnormal migration and invasion of extravillous trophoblast cells (EVTs) and enhanced neovascularization occurring in an uncontrolled manner in time and space are closely related to the abnormal expression of pro­angiogenic and anti­angiogenic factors. The pigment epithelium­derived factor (PEDF) is a multifunctional regulatory factor that participates in several important biological processes and is recognized as the most efficient inhibitor of angiogenesis. The present study aimed to explore the effects of PEDF on EVT phenotypes and the underlying mechanisms in PAS. HTR­8/SVneo cells were transfected to overexpress or knock down PEDF. Cell proliferation and invasion were assessed using Cell Counting Kit­8, 5­ethynyl­2'­deoxyuridine and Transwell assays. In vitro angiogenesis was analyzed using tube formation assays. The degree of ferroptosis was assessed by evaluating the levels of lipid reactive oxygen species, total iron, Fe2+, malondialdehyde and reduced glutathione using commercial kits. The expression levels of biomarkers of ferroptosis, angiogenesis, cell proliferation and Wnt signaling were examined by western blotting. PEDF overexpression decreased the proliferation, invasion and angiogenesis, and induced ferroptosis of EVTs. Activation of Wnt signaling with BML­284 and overexpression of vascular endothelial growth factor (VEGF) reversed the PEDF overexpression­induced suppression of cell proliferation, invasion and tube formation. PEDF overexpression­induced ferroptosis was also decreased by Wnt agonist treatment and VEGF overexpression. It was predicted that PEDF suppressed the proliferation, invasion and angiogenesis, and increased ferroptosis in EVTs by decreasing Wnt­ß­catenin/VEGF signaling. The findings of the present study suggested a novel regulatory mechanism of the phenotypes of EVTs and PAS.


Assuntos
Proteínas do Olho , Ferroptose , Fatores de Crescimento Neural , Placenta Acreta , Serpinas , Gravidez , Humanos , Feminino , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60683 , beta Catenina/metabolismo , Trofoblastos/metabolismo , Placenta Acreta/metabolismo , Via de Sinalização Wnt , 60489 , Proliferação de Células , Movimento Celular , Placenta/metabolismo
17.
Yonsei Med J ; 65(4): 202-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515357

RESUMO

PURPOSE: In view of conflicting reports on the ability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to infect placental tissue, this study aimed to further evaluate the impact of inflammation and placental damage from symptomatic third-trimester maternal COVID-19 infection. MATERIALS AND METHODS: This case-control study included 32 placenta samples each from symptomatic COVID-19 pregnancy and normal non-COVID-19 pregnancy. The villous placental area's inflammatory expression [angiotensin converting enzyme-2 (ACE-2), transmembrane protease serine-2 (TMPRSS2), interferon-γ (IFN-γ), interleukin-6 (IL-6), and SARS-CoV-2 spike protein] and apoptotic rate were examined using immunohistochemistry and Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay. Comparison and correlation analysis were used based on COVID-19 infection, placental SARS-CoV-2 spike protein evidence, and maternal severity status. RESULTS: Higher expressions of TMPRSS2, IFN-γ, and trophoblast apoptotic rate were observed in the COVID-19 group (p<0.001), whereas ACE-2 and IL-6 expressions were not significantly different from the control group (p>0.05). Additionally, SARS-CoV-2 spike protein was detected in 8 (25%) placental samples of COVID-19 pregnancy. COVID-19 subgroup analysis revealed increased IFN-γ, trophoblast, and stromal apoptosis (p<0.01). Moreover, the results of the current study revealed no correlation between maternal COVID-19 severity and placental inflammation as well as the apoptotic process. CONCLUSION: The presence of SARS-CoV-2 spike protein as well as altered inflammatory and apoptotic processes may indicate the presence of placental disturbance in third-trimester maternal COVID-19 infection. The lack of correlation between placental disruption and maternal severity status suggests the need for more research to understand the infection process and any potential long-term impacts on all offsprings born to COVID-19-infected pregnant women.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Glicoproteína da Espícula de Coronavírus , Feminino , Gravidez , Humanos , Placenta/metabolismo , SARS-CoV-2 , Terceiro Trimestre da Gravidez , Estudos de Casos e Controles , Interleucina-6/metabolismo , Complicações Infecciosas na Gravidez/metabolismo , Inflamação/metabolismo , Apoptose
18.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532128

RESUMO

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Assuntos
Resistência à Insulina , Gravidez , Feminino , Camundongos , Animais , Resistência à Insulina/genética , Frutose/efeitos adversos , Frutose/metabolismo , Progesterona/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Fígado/metabolismo , Lipídeos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
19.
Front Immunol ; 15: 1351898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464530

RESUMO

Pregnancy is an immunologically regulated, complex process. A tightly controlled complement system plays a crucial role in the successful establishment of pregnancy and parturition. Complement inhibitors at the feto-maternal interface are likely to prevent inappropriate complement activation to protect the fetus. In the present study, we aimed to understand the role of Factor H (FH), a negative regulator of complement activation, in normal pregnancy and in a model of pathological pregnancy, i.e. preeclampsia (PE). The distribution and expression of FH was investigated in placental tissues, various placental cells, and in the sera of healthy (CTRL) or PE pregnant women via immunohistochemistry, RT-qPCR, ELISA, and Western blot. Our results showed a differential expression of FH among the placental cell types, decidual stromal cells (DSCs), decidual endothelial cells (DECs), and extravillous trophoblasts (EVTs). Interestingly, FH was found to be considerably less expressed in the placental tissues of PE patients compared to normal placental tissue both at mRNA and protein levels. Similar results were obtained by measuring circulating FH levels in the sera of third trimester CTRL and PE mothers. Syncytiotrophoblast microvesicles, isolated from the placental tissues of PE and CTRL women, downregulated FH expression by DECs. The present study appears to suggest that FH is ubiquitously present in the normal placenta and plays a homeostatic role during pregnancy.


Assuntos
Placenta , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo
20.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473937

RESUMO

Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11ß-HSD1, 11ß-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (ß = 0.006, p < 0.01), while PAE was associated with 11ß-HSD2 protein expression (ß = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11ß-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.


Assuntos
Doenças Fetais , Efeitos Tardios da Exposição Pré-Natal , Testes Psicológicos , Autorrelato , Humanos , Gravidez , Feminino , Placenta/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Estresse Psicológico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Desenvolvimento Fetal , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...